New Synthetic Routes to Spiroacetals. The 3,4-Dihydro-2H-pyran Approach to (\pm)-Talaromycin B

Philip Kocienski ${ }^{\text {a }}$ and Clive Yeates
Department of Organic Chemistry, The University, Leeds LS2 9JT, U.K.

Abstract

The nucleophilic cleavage of the oxirane (9) by the organocuprate derived from 3-ethyl-6-lithio-3,4-dihydro-2H-pyran (7) was the key step in a synthesis of racemic talaromycin B (12). A similar synthesis of desethyltalaromycin B (15) from (9) and 6-lithio-3,4-dihydro-2H-pyran was achieved.

In 1977 Boeckman and Bruza ${ }^{1}$ showed that a wide variety of 3,4-dihydro-2H-pyrans could be cleanly metallated with $\mathrm{Bu}^{1} \mathrm{Li}$ in tetrahydrofuran (THF) at $0^{\circ} \mathrm{C}$. Like their acyclic counterparts such as α-methoxyvinyl-lithium, ${ }^{2.3}$ these cyclic vinyl ether carbanions behaved as typical strongly basic hard nucleophiles undergoing nucleophilic addition to carbonyls and nucleophilic substitution on primary iodides and allylic bromides. Since the resultant enol ethers were highly susceptible to hydrolysis, the 6 -lithio-3,4-dihydro- 2 H -pyrans served as masked bifunctional acylanionequivalents of5-hydroxypentanal as illustrated in Scheme 1. ${ }^{1}$

Scheme 1.

We recently reported an approach to 4-hydroxy-1,7-dioxaspiro[5.5]undecane (5) ${ }^{4}$ (Scheme 2) which exploited the

(3)
1

Scheme 2.
nucleophilicity of the anion (2) and the susceptibility of the enol ether function to intramolecular electrophilic addition of a suitably placed side chain hydroxy function to construct the spiroacetal. ${ }^{5,6}$ Central to the success of this approach was the nucleophilic scission of the unreactive monosubstituted oxirane (4). Precedent suggested that α-alkoxyvinyl-lithiums react only
sluggishly - if at all - with oxiranes. ${ }^{1,3}$ Fortunately, the relatively stable organocuprate (3) ${ }^{7}$ derived from reaction of (2) with CuI gave a clean and fast reaction with oxirane (4) and subsequent aqueous acidic work-up afforded the olive fly pheromone (5). ${ }^{4}$ We now report full details ${ }^{8}$ of a strategically similar synthesis of racemic talaromycin B (12).

Talaromycins A (14) and B (12) are isomeric toxic metabolites produced by the fungus Talaromyces stipitatus which infects chicken feedstock. ${ }^{9}$ Several syntheses of (12) have appeared, ${ }^{9-12}$ including one which establishes the absolute configuration. ${ }^{13}$ The closing stages of our synthesis (Scheme 3) begins with the union of fragments (6) and (9) via the black, heterogeneous organocuprate (8). Without purification, the intermediate (10) was hydrolysed via (11) to give a mixture of products from which pure talaromycin B and the isomer (13) were isolated in 23% and 14% yield respectively after column chromatography. By a similar sequence, desethyltalaromycin B (15) was prepared from (3) and (9) in 49% overall yield.

The structure of the products was assigned from their 400 $\mathrm{MHz}{ }^{1} \mathrm{H}$ and $22.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ n.m.r. spectroscopic data given in Tables 1 and 2 respectively. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (12) was in excellent agreement with the 360 MHz data for natural talaromycin B published by Lynn and co-workers. ${ }^{9}$ Furthermore, both isomers (12) and (13) gave virtually identical fragmentation patterns on electron impact mass spectroscopy which included the fragments (16)-(19) characteristic of spiroacetals. ${ }^{14}$

The key dihydropyran (6) was prepared in six steps from the readily available aldehyde (20) ${ }^{15}$ in 36% overall yield as shown in Scheme 4. The conversion of the aldehyde (20) into the lactone (22) could not be achieved efficiently by NaBH_{4} reduction followed by lactonization. However, large scale catalytic hydrogenation over PtO_{2} in the presence of SnCl_{2} as a promoter ${ }^{16}$ gave rapid and efficient reduction of the aldehyde function in (20) to the carbinol (21) provided the catalyst was intermittently revived by introducing small amounts of oxygen. The lactonization of (21) and subsequent steps were routine.

The conversion of the phenyl selenoether (24) into the olefin (28) (Scheme 5) was the weakest link in the chain of 5 steps by which the oxirane (9) was synthesized in 26% overall yield from commercial diethyl cyclopropane-1,1-dicarboxylate (23). A variety of conditions were examined for the conversion $(26) \longrightarrow(28){ }^{17}$ but the yield could not be made to exceed $30-$ 36% at best. Although the yield of terminal olefin (28) from the o-nitrophenyl selenoether (27) ${ }^{18}$ was improved to 60%, the route used to prepare (27) was too long to compete favourably with the sequence shown in Scheme 5 .

A major blemish in the synthesis described above results from the use of the racemic precursors (6) and (9). The consequent lack of diastereoisomeric control between the remote chiral centres at C-4 and C-9 in (12) leads to a statistical 1:1 mixture of (12) and (13) in the first instance which is not reflected in the product composition because (13), with its destabilizing

(6) $R=H, n=1 \quad \square i$
(7) $R=L i, n=1 \quad \square$
(8) $R=C u L i, n=1$

(12)

(14)

(15)

Scheme 3. Reagents: i, Bu'Li-THF, $0^{\circ} \mathrm{C}$; ii, $\mathrm{CuI}-\mathrm{THF},-68{ }^{\circ} \mathrm{C}$; iii, oxirane (9), $0-20^{\circ} \mathrm{C}$; iv, $\mathrm{HCl}-\mathrm{THF}$-water.
axial hydroxy function, decomposes slowly under the conditions used to hydrolyse (10). Nonetheless, pure crystalline talaromycin B can be prepared in gram quantities in modest overall yield from cheap, readily available starting materials. Attempts are now under way to extend the dihydropyran route to more complex spiroacetals.

Experimental

Column chromatography was carried out on Kieselgel 60 (230-400 mesh). All reactions requiring anhydrous conditions were conducted in flame-dried apparatus under a static atmosphere of dry nitrogen. Organic extracts were dried over MgSO_{4} and evaporated at aspirator pressure using a Büchi rotary evaporator. Cuprous iodide was extracted with tetrahydrofuran in a Soxhlet apparatus and then dried at 0.5 mmHg . Commercial m-chloroperbenzoic acid containing 15 $20 \% m$-chlorobenzoic acid was used without further purification. Dry solvents were distilled from the appropriate dehydrating

(20)
(21)
(6)

(22)

Scheme 4. Reagents: i, $\mathrm{PtO}_{2}, \mathrm{SnCl}_{2}-\mathrm{H}_{2}-60 \%$ aq. $\mathrm{EtOH} ; \mathrm{ii}, \mathrm{NaOH}$, $20^{\circ} \mathrm{C}$; iii, conc. HCl ; iv, $\mathrm{Bu}^{\prime}{ }_{2} \mathrm{AlH}$-toluene, $-78^{\circ} \mathrm{C}$; v, $\mathrm{MeSO}_{2} \mathrm{Cl}-$ pyridine; vi, $100-110^{\circ} \mathrm{C}$, pyridine.

(23)
(24)

(26) $A r=P h$

(28)

Scheme 5. Reagents: i, $\mathrm{PhSeBH}_{3} \mathrm{Na}-\mathrm{EtOH}$; ii, $\mathrm{LiAlH}_{4}-\mathrm{Et}_{2} \mathrm{O}$; iii, 2methoxypropene, H^{+}; $\mathrm{iv}, \mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pyridine; $\mathrm{v}, m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
agents; THF (Na wire), $\mathrm{EtOH}\left[\mathrm{Mg}(\mathrm{OEt})_{2}\right], \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$, pyridine $\left(\mathrm{CaH}_{2}\right)$.

Chemical shifts are reported as δ values relative to tetramethylsilane as an internal standard. ${ }^{1} \mathrm{H}$ n.m.r. spectra were recorded at 90 MHz in CDCl_{3} and i.r. spectra were obtained on thin films unless otherwise indicated. Peak

Table 1. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. data for talaromycin B (12), 4-epi-talaromycin B (13), and desethyltalaromycin B (15) ${ }^{a}$

	(12)	(13)	(15)
2- H_{3}	3.315 (dd, $J 11,11)$	3.94 (dd, J 11.5, 11.5)	3.34 (dd, J 11.5, 11)
$2-\mathrm{H}_{\text {e }}$	3.59 (dd, J 11, 5)	3.82 (dd, J 11.5, 4)	3.61 (dd, J 11.5, 5)
$3-\mathrm{H}_{\mathrm{a}}$	1.835 (tdt, J 11, 4.6, 6)	1.81 (m)	1.75-1.90 (m)
$3-\mathrm{H}_{\text {c }}$		-	-
$4-\mathrm{Ha}_{3}$	4.05 (ddd, J 11.5, 10.5, 5)	-	4.06 (ddd, ${ }^{\text {d } 11,10.5)}$
$4-\mathrm{H}_{\text {c }}$	-	4.16 (m)	
$5-\mathrm{Ha}_{3}$	1.44 (dd, J 12, 11)	1.68 (dd, J 14, 3.5)	1.41 (dd, J 12.5, 11)
$5-\mathrm{H}_{\text {c }}$	1.99 (dd, J 12, 5)	1.92 (dd, J 14, 3.0)	2.02 (dd, J 12.5, 5)
$8-\mathrm{Ha}_{\text {a }}$	3.195 (dd, J 11, 11)	3.34 (dd, J 11.5, 11.5)	3.52-3.63 unres.
$8-\mathrm{H}_{\text {c }}$	3.51 (ddd, J 11, 4.5, 2)	3.72 (dd, J 11.5, 5)	3.52-3.63 unres.
$9-\mathrm{H}_{\mathrm{a}}$	1.43 (m)	1.4-1.7 unres.	$1.48-1.57$ unres.
$9-\mathrm{H}_{\mathrm{e}}$	-	- 1.7	$1.75-1.90$ (m)
$10-\mathrm{H}_{\mathrm{a}}$	1.38 (dq, J 13, 3.6)	$1.4-1.7$ unres.	$1.48-2.57$ unres.
$10-\mathrm{H}_{\text {c }}$	1.60 (m)	1.4-1.7 unres.	1.59 (dm)
$11-\mathrm{H}_{\mathrm{a}}$	1.535 (ddd, J 13, 13, 4)	1.4-1.7 unres.	$1.48-1.57$ unres.
$11-\mathrm{H}_{\mathrm{c}}$	1.71 (ddd, J 13, 3.6, 2.5)	1.4-1.7 unres.	1.66 (dm)
12-H	ca. 3.68 (distorted d, J ca. 6) ${ }^{\text {b }}$	ca. 3.63 (m)	$3.70-3.73$ (m)
$12-\mathrm{H}^{\prime}$	$c a .3 .68$ (distorted d, J ca. 6) ${ }^{\text {b }}$	ca. 3.63 (m)	3.52-3.63 unres.
$13-\mathrm{H}_{2}$	ca. 1.16 (m)	$1.09-1.26$ (m)	-
$14-\mathrm{H}_{3}$	0.88 (t, J 7.5)	0.89 (t, J 7.5)	-

${ }^{a}$ Spectra were recorded in CDCl_{3} solution; chemical shifts are given in p.p.m. relative to internal tetramethylsilane; coupling constants are given in $\mathrm{Hz} .^{b}$ Reported as a doublet ${ }^{9}$ in the 360 MHz spectrum. At 400 MHz these $\mathrm{C}-12$ protons have a slightly different chemical shift giving rise to an ABX pattern. Abbreviations: $q=$ quartet, $t=$ triplet, $d=$ doublet, $m=$ multiplet, unres $=$ unresolved, $a=$ axial, $e=$ equatorial.

Table 2. $22.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ n.m.r. data for talaromycin B (12), 4-epitalaromycin B (13), and desethyltalaromycin B (15)

	(12)	(13)	(15)
C-2	61.43	62.28	59.56 or 58.74
C-3	45.86	41.11	44.55
C-4	65.94	67.05	62.86
C-5	44.14	40.66	43.03
C-6	96.78	96.93	95.15
C-8	64.80	65.53	59.56 or 58.74
C-9	36.57	36.50	23.26
C-10	25.06 or 24.73	25.13 or 24.41	16.70
C-11	35.14	35.04	33.39
C-12	60.85	57.50	58.04
C-13	25.06 or 24.73	25.13 or 24.41	-
C-14	11.10	11.08	-

${ }^{a}$ Spectra were recorded in CDCl_{3} solution; chemical shifts are given in p.p.m. relative to internal tetramethylsilane.
intensities are denoted by m (medium) and w (weak); otherwise, the signals are of strong intensity.

5-Ethyl- δ-valerolactone(5-Ethyltetrahydro-2-pyrone) (22).-A solution of the aldehyde (20) ${ }^{15}(50 \mathrm{~g}, 0.316 \mathrm{~mol})$ in 60% aqueous EtOH containing $\mathrm{SnCl}_{2}(0.45 \mathrm{~g}, 2 \mathrm{mmol})$ was hydrogenated over $\mathrm{PtO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~g})$ at 1 atm . The mixture was periodically shaken in air for 5 min ($c a$. every 45 min) in order to increase the rate of reduction. After 3 h , the mixture was filtered through Celite and the EtOH removed under reduced pressure. The residue was diluted to $400 \mathrm{~cm}^{3}$ with MeOH and 10 m NaOH (40 cm^{3}) added dropwise. After 1 h the mixture was concentrated and the residue extracted with $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ which was discarded. The aqueous layer was acidified with concentrated $\mathrm{HCl}\left(32 \mathrm{~cm}^{3}\right)$ to $\mathrm{pH} 2-3$ and stirred for 18 h . After saturation with salt, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 200 \mathrm{~cm}^{3}\right)$ and the combined extracts washed with saturated NaHCO_{3}, dried, and evaporated. Distillation of the residue gave (22) (25.4 $\mathrm{g}, 60 \%$) as a colourless oil, b.p. $80-83{ }^{\circ} \mathrm{C} / 0.7 \mathrm{mmHg}$; $v_{\text {max. }}$. $2970,1740,1460,1405,1350,1340,1295,1240,1200,1185$,

1100 , and $1060 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CCl}_{4}\right) 4.25(1 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}, \mathrm{dd}$, $\left.J 11, J^{\prime} 9 \mathrm{~Hz}\right), 2.3-2.6(2 \mathrm{H}, \mathrm{m}), 1.2-2.2(5 \mathrm{H}, \mathrm{m})$, and 0.95 ($3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$).

3-Ethyl-3,4-dihydro-2H-pyran (6).-To a solution of the lactone (22) ($25.7 \mathrm{~g}, 0.2 \mathrm{~mol}$) in toluene ($200 \mathrm{~cm}^{3}$) cooled to $-70^{\circ} \mathrm{C}$ was added dropwise over 3 h , a solution of diisobutylaluminium hydride ($25 \% \mathrm{w} / \mathrm{w} ; 225 \mathrm{~cm}^{3}, c a .0 .3 \mathrm{~mol}$) in toluene. The mixture was stirred at $-70^{\circ} \mathrm{C}$ for a further 2 h and then poured into a mixture of glacial acetic acid $\left(150 \mathrm{~cm}^{3}\right)$ and ice (300 g). After the mixture had been stirred for 15 min , the toluene layer was separated and the residue extracted with benzene ($2 \times 250 \mathrm{~cm}^{3}$). The combined extracts were washed with saturated aqueous NaCl and NaHCO_{3}, dried, and evaporated to give $22 \mathrm{~g}(84 \%)$ of the lactol after distillation (b.p. $68-70^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$.

To a solution of the lactol ($17.8 \mathrm{~g}, 0.137 \mathrm{~mol}$) in dry pyridine ($200 \mathrm{~cm}^{3}$) cooled to $0{ }^{\circ} \mathrm{C}$ under N_{2} was added dropwise over 1 h , methanesulphonyl chloride ($16 \mathrm{~cm}^{3}, 0.205 \mathrm{~mol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h and then heated at $100-110^{\circ} \mathrm{C}$ for a further 1.5 h . After cooling to room temperature the mixture was poured into water $\left(500 \mathrm{~cm}^{3}\right)$ and extracted with light petroleum (b.p. $\left.30-40^{\circ} \mathrm{C}\right)\left(2 \times 200 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water $\left(4 \times 500 \mathrm{~cm}^{3}\right)$, dried, and evaporated. Spinning band distillation of the residue gave (6) ($9.02 \mathrm{~g}, 59 \%$), b.p. $140-141^{\circ} \mathrm{C} / 759 \mathrm{mmHg} ; v_{\text {max. }} 3070 \mathrm{~m}, 1650$, and 1078 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 6.3(1 \mathrm{H}, \mathrm{m}), 4.65(1 \mathrm{H}, \mathrm{m}), 4.0(1 \mathrm{H}$, dd with further fine splitting, $J 10, J^{\prime} 2 \mathrm{~Hz}$), 3.5 (1 H , dd with further fine splitting, J $\left.10, J^{\prime} 8 \mathrm{~Hz}\right), 1.15-2.2(5 \mathrm{H}, \mathrm{m})$, and $0.95(3 \mathrm{H}$, distorted $\mathrm{t}, J 7 \mathrm{~Hz})$ (Found: $M^{+}, 112.0888 . \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}$ requires $M, 112.08881$).

Diethyl 2-Phenylselenoethylmalonate (24).-To a solution of diphenyl diselenide ($17.2 \mathrm{~g}, 55 \mathrm{mmol}$) in dry $\mathrm{EtOH}\left(200 \mathrm{~cm}^{3}\right)$ was added in portions at $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(4.2 \mathrm{~g}, 111 \mathrm{mmol})$. To the cold, colourless solution was added dropwise over 30 min a solution of diethyl cyclopropane-1,1-dicarboxylate ($18.6 \mathrm{~g}, 100$ mmol) in $\mathrm{EtOH}\left(106 \mathrm{~cm}^{3}\right)$, and the mixture was stirred under N_{2} for 18 h , acidified with $1 \mathrm{~m} \mathrm{HCl}\left(120 \mathrm{~cm}^{3}\right)$, diluted with water ($300 \mathrm{~cm}^{3}$), and the ethanol evaporated under reduced pressure.

The residue was extracted with benzene ($2 \times 300 \mathrm{~cm}^{3}$) and dried. Chromatography on silica gel G (350 g) eluting with $0-15 \%$ EtOAc in light petroleum gave the selenide (24) as a yellow oil ($32.9 \mathrm{~g}, 95 \%$), $v_{\text {max. }} 2990,1730,1575,1475,1435$, $1025,860,740$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 7.0-7.6(5 \mathrm{H}, \mathrm{m}), 4.1(4 \mathrm{H}, \mathrm{q}, J$ $7 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 2.90(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 2.25(2 \mathrm{H}, \mathrm{q}, J 7$ Hz), and $1.2(6 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$ (Found: $M^{+}, 344.05308$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}{ }^{80}$ Se requires $M, 344.052$ 620).

2-Hydroxymethyl-4-phenylselenobutan-1-ol (25).-Reduction of the ester (24) ($32.9 \mathrm{~g}, 45 \mathrm{mmol}$) with LiAlH_{4} in $\mathrm{Et}_{2} \mathrm{O}$ in the usual way gave the diol (25) (27.4 g) which was used in the next step without further purification. A small sample was crystallized from $\mathrm{Et}_{2} \mathrm{O}$-hexane to give m.p. $48-49.5^{\circ} \mathrm{C}, \delta_{\mathrm{H}}$ $7.1-7.6(5 \mathrm{H}, \mathrm{m}), 2.96(2 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}), 2.7\left(2 \mathrm{H}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$ exchange), and $1.5-2.1$ ($3 \mathrm{H}, \mathrm{m}$) (Found: C, $50.90 ; \mathrm{H}, 6.3$. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Se}$ requires C, $50.92 ; \mathrm{H}, 6.22 \%$).

2,2-Dimethyl-5-(2-phenylselenoethyl)-1,3-dioxane (26).-To a stirred solution of the crude diol (25) $(27.4 \mathrm{~g}, 100 \mathrm{mmol})$ and toluene- p-sulphonic acid (20 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$ was added dropwise at $0^{\circ} \mathrm{C} 2$-methoxypropene ($11 \mathrm{~cm}^{3}, 110 \mathrm{mmol}$). The reaction was stirred at room temperature for 1.5 h , before anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~g})$ was added and the mixture stirred for a further 30 min . Saturated brine ($200 \mathrm{~cm}^{3}$) was added and the organic layer separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 100 \mathrm{~cm}^{3}\right)$ and the combined organic extracts dried and evaporated to give (26) as a pale yellow oil ($29.8 \mathrm{~g}, c a .100 \%$) which was used in the next step without further purification. A small sample purified by column chromatography on silica gel eluting with $10 \% \mathrm{Et}_{2} \mathrm{O}$ in light petroleum gave: $\mathrm{v}_{\text {max. }} 1580 \mathrm{~m}$, $1480 \mathrm{~m}, 1200,1072,830 \mathrm{~m}, 738 \mathrm{~m}$, and $692 \mathrm{~m} \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 7.25-7.5$ $(2 \mathrm{H}, \mathrm{m}), 7.05-7.25(3 \mathrm{H}, \mathrm{m}), 3.8\left(2 \mathrm{H}, \mathrm{dd}, J 4, J^{\prime} 11 \mathrm{~Hz}\right), 3.42(2$ $\left.\mathrm{H}, \mathrm{dd}, J 7, J^{\prime} 11 \mathrm{~Hz}\right), 2.84(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 1.4-2.0(3 \mathrm{H}, \mathrm{m})$, and 1.3 ($6 \mathrm{H}, \mathrm{s}$); $m / z 300\left(M^{+}, 20 \%\right.$), 285 (24), 184 (11), 171 (15), 158 (16), 157 (22), 143 (84), and 43 (100) (Found: M^{+}, 300.063 46. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}{ }^{80} \mathrm{Se}$ requires $M, 300.062$ 791).

2,2-Dimethyl-5-vinyl-1,3-dioxane (28).-To a stirred solution of the crude selenide (26) $(27.8 \mathrm{~g}, 93 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300$ cm^{3}) and pyridine ($16 \mathrm{~cm}^{3}$) was added dropwise at $0^{\circ} \mathrm{C}$ over 30 $\mathrm{min}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}\left(45 \mathrm{~cm}^{3}, 470 \mathrm{mmol}\right)$. The mixture was allowed to warm to room temperature with occasional cooling to maintain the temperature at $15-20^{\circ} \mathrm{C}$. The mixture was stirred for a further 30 min and then added in one portion to refluxing $\mathrm{CCl}_{4}\left(250 \mathrm{~cm}^{3}\right.$) containing pyridine ($15 \mathrm{~cm}^{3}$). After 15 min at reflux, the mixture was cooled, washed with saturated aqueous NaHCO_{3} and the organic layer dried. The bulk of the solvent was removed at 160 mmHg (bath temperature $20^{\circ} \mathrm{C}$) and the residue was taken up in light petroleum (b.p. $30-40^{\circ} \mathrm{C}$, $100 \mathrm{~cm}^{3}$), washed with water ($3 \times 100 \mathrm{~cm}^{3}$), dried, and concentrated at 160 mmHg (bath temperature $20^{\circ} \mathrm{C}$). The residue was distilled to give the alkene (28) ($4.3 \mathrm{~g}, 32 \%$) as a colourless oil, b.p. $120-125^{\circ} \mathrm{C}$ (bath) $/ 140 \mathrm{mmHg}$; $\mathrm{v}_{\text {max. }} .1640 \mathrm{w}$, $1370,1245,1195,1150,1130,1065,920$, and $830 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ $5.4-5.8(1 \mathrm{H}, \mathrm{m}), 5.05(2 \mathrm{H}, \mathrm{m}), 3.78\left(2 \mathrm{H}, \mathrm{dd}, J 11, J^{\prime} 14 \mathrm{~Hz}\right)$, $3.68\left(2 \mathrm{H}, \mathrm{dd}, J 11, J^{\prime} 16 \mathrm{~Hz}\right), 2.3-2.8(1 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{s})$, and $1.38(3 \mathrm{H}, \mathrm{s})$ (Found: $M^{+}, 142.09908 ; \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$ requires M, 142.099 373).

2,2-Dimethyl-5-oxiranyl-1,3-dioxane (9).-A mixture of m chloroperbenzoic acid ($7.5 \mathrm{~g}, 34 \mathrm{mmol}$), anhydrous NaHCO_{3} $(12 \mathrm{~g})$, and olefin $(28)(4.0 \mathrm{~g}, 28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was stirred for 24 h . Saturated aqueous $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and $\mathrm{NaHSO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ were added and the mixture stirred for 30 min . The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with NaHCO_{3}, dried, and evaporated. The residue was
distilled to give the oxirane (9) ($3.72 \mathrm{~g}, 85 \%$) as a colourless oil, b.p. $110-115{ }^{\circ} \mathrm{C}$ (bath) $/ 18 \mathrm{mmHg}$; $\mathrm{v}_{\text {max }} 1268,1250,1200$, and $830 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 3.7-4.2(4 \mathrm{H}, \mathrm{m}), 3.03\left(1 \mathrm{H}, \mathrm{ddd}, J 7, J^{\prime} 4.5, J^{\prime \prime} 4\right.$ $\mathrm{Hz}), 2.72\left(1 \mathrm{H}, \mathrm{dd}, J 4.5, J^{\prime} 4 \mathrm{~Hz}\right), 2.54\left(1 \mathrm{H}, \mathrm{dd}, J 4.5, J^{\prime} 3.0 \mathrm{~Hz}\right)$, $1.4(6 \mathrm{H}, \mathrm{s})$, and $1.4-1.7(1 \mathrm{H}, \mathrm{m})$ (Found: $M^{+}, 158.0941$. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $M, 158.094$ 288).

Talaromycin B(12) and 4-epi-Talaromycin B (13).- $\mathrm{Bu}^{1} \mathrm{Li}$ (2.2 M in pentane, $29 \mathrm{~cm}^{3}, 63.8 \mathrm{mmol}$) was added dropwise to a stirred solution of the dihydropyran (6) $(5.3 \mathrm{~g}, 47.5 \mathrm{mmol})$ in dry THF ($19 \mathrm{~cm}^{3}$) at $-68^{\circ} \mathrm{C}$. The mixture was then stirred at $0^{\circ} \mathrm{C}$ for 1 h , cooled to $-68^{\circ} \mathrm{C}$, and added rapidly via a cannula to a stirred suspension of $\mathrm{CuI}(5.26 \mathrm{~g}, 28 \mathrm{mmol})$ in THF $\left(50 \mathrm{~cm}^{3}\right)$ at $68{ }^{\circ} \mathrm{C}$. The black heterogeneous mixture was allowed to warm to $-30^{\circ} \mathrm{C}$ over 1 h and kept at $-30^{\circ} \mathrm{C}$ for 30 min . A solution of the oxirane (9) ($2.5 \mathrm{~g}, 15.8 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$) was then added dropwise over 10 min . The mixture was allowed to warm slowly to room temperature and after 3 h was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ containing 10% ammonia ($150 \mathrm{~cm}^{3}$). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 75 \mathrm{~cm}^{3}\right)$ and the combined extracts washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$-ammonia, dried, and evaporated. The residue was allowed to stand at room temperature for 12 h in concentrated $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{THF}$ $(1: 5: 20)\left(80 \mathrm{~cm}^{3}\right)$, and was then neutralized with saturated aqueous NaHCO_{3} and the bulk of the THF evaporated. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 25 \mathrm{~cm}^{3}\right)$ and the combined extracts dried and evaporated. Thin layer chromatography [silica gel, triple elution with benzene-dioxane (3:1)] showed three major polar components having $R_{F} 0.6,0.43$, and 0.37 , which were separated by column chromatography on silica gel eluting with benzene-dioxane ($5: 2$). The first component to elute was 4 -epi-talaromycin $\mathrm{B}(13)(0.512 \mathrm{~g}, 14 \%)$, a colourless oil, $v_{\text {max. }} 3450,1465,1432,1375,1$ 180, 1 148, 1090,1025 , 1015 , and $900 \mathrm{~cm}^{-1} ; m / z 230\left(M^{+}, 6 \%\right), 147$ (92), 144 (12), 129 (100), and 126 (72) (Found: $M^{+}, 230.15204 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $M, 230.151$ 180).

The second component to elute was talaromycin B(12) (0.85 $\mathrm{g}, 23 \%$); m.p. (sealed tube) $135-136.5^{\circ} \mathrm{C}$ (EtOAc-hexane); $v_{\text {max. }}(\mathrm{KBr}) 3350,1380,1187,1085,1075,1060,1040,1035$, 895, and $870 \mathrm{~cm}^{-1} ; m / z 230\left(M^{+}, 5 \%\right), 147$ (100), 144 (99), 129 (80), and 126 (69) (Found: $M^{+}, 230.15136 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $M, 230.15180$ (Found: C, 62.45; H, 9.75. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}$ requires C, 62.58 ; H, 9.63%).

The third component to elute was obtained in $c a .5 \%$ yield and was identified as 3-hydroxy-2-hydroxymethyl-7,7-dimethyl-octan-1-ol, m.p. (sealed tube) $80-81^{\circ} \mathrm{C}$ (EtOAc-hexane); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3620,3500,1470,1368,1072$, and $950 \mathrm{~cm}^{-1} ; \delta_{\mathrm{C}}$ 72.13, 62.41, 60.82, 46.68, 44.21, 35.92, 30.13, 29.42, and 21.06 (Found: C, 64.4; H, 11.7. $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 64.7 ; \mathrm{H}, 11.8 \%$). This product probably arose from the reaction of the oxirane (9) with 3,3-dimethylbutyl-lithium via the organocuprate. 3,3-Dimethylbutyl-lithium can be generated from the known ${ }^{19}$ rapid addition of $\mathrm{Bu}^{\prime} \mathrm{Li}$ with the ethylene which is a by-product of the decomposition of THF induced by $\mathrm{Bu}^{1} \mathrm{Li}^{20}$

Desethyltalaromycin B(15).-From $1.6 \mathrm{~g}(19 \mathrm{mmol})$ of $3,4-$ dihydro- 2 H -pyran (1) and 1.0 g (6.3 mmol) of the oxirane (9), desethyltalaromycin B (15) ($0.633 \mathrm{~g}, 49 \%$) was obtained as described above, m.p. (sealed tube) $127-129^{\circ} \mathrm{C}$; $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ $3605 \mathrm{~m}, 3480 \mathrm{br}, 1490,1385,1088,900 \mathrm{~m}$, and $870 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ $202\left(M^{+}, 6 \%\right), 185(16), 147(35), 144(19), 129(24), 127(19), 126$ (24), 101 (100), and 98 (87) (Found: $M^{+}, 202.12082 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $M, 202.12050$) (Found: $\mathrm{C}, 59.65 ; \mathrm{H}, 9: 0 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{9}$ requires $\mathrm{C}, 59.4 ; \mathrm{H}, 9.0 \%$).

Acknowledgements

We thank the S.E.R.C. for a post-doctoral award (C. Y.) and Drs. Brian Mann and Catriona Spenser, University of Sheffield,
for recording high-field n.m.r. spectra. We thank the Royal Society of Chemistry for a Hickinbottom Fellowship to P. K.

References

1 R. K. Boeckman and K. J. Bruza, Tetrahedron Lett., 1977, 4187; Tetrahedron, 1981, 37, 3997; see also O. Riobe, A. Lebouc, and J. Delaunay, C.R. Acad. Sci., 1977, 284, 281.
2. U. Schöllkopf and P. Hänssle, Liebigs Ann. Chem., 1972, 763, 208.

3 J. E. Baldwin, G. A. Höfle, and O. W. Lever, J. Am. Chem. Soc., 1974, 96, 7125.
4 P. Kocienski and C. Yeates, Tetrahedron Lett., 1983, 24, 3905.
5 There was only one previous report of a similar transformation; R. K. Boeckman, K. J. Bruza, and G. R. Heinrich, J. Am. Chem. Soc., 1978, 100, 7101.
6 R. Amouroux, Heterocycles, 1984, 22, 1489 has independently reported similar findings.
7 The chemistry of organocuprates derived from α-alkoxyvinyllithiums has been examined: R. K. J. Boeckman, K. J. Bruza, J. E. Baldwin, and O. W. Lever, J. Chem. Soc., Chem. Commun., 1975, 519; C. G. Chavdarian and C. H. Heathcock, J. Am. Chem. Soc., 1975, 97, 3822.

8 Preliminary communication: P. Kocienski and C. Yeates, J. Chem. Soc., Chem. Commun., 1984, 151.
9 D. G. Lynn, N. J. Phillips, W. C. Hutton, J. Shabanowitz, D. I. Fennell, and R. J. Cole, J. Am. Chem. Soc., 1982, 104, 7319.
10 S. L. Schreiber and T. J. Sommer, Tetrahedron Lett., 1983, 24, 4781.
11 A. P. Kozikowski and J. G. Scripko, J. Am. Chem. Soc., 1984, 106, 353.
12 I. T. Kay and D. Bartholomew, Tetrahedron Lett., 1984, 25, 2035.
13 A. B. Smith and A. S. Thompson, J. Org. Chem., 1984, 44, 1469.
14 W. Francke, G. Hindorf, and W. Reith, Naturwissenschaften, 1979, 66, 619.
15 G. Stork, A. Brizzolara, H. Landesman, J. Smuszkovics, and R. Terrell, J. Am. Chem. Soc., 1963, 85, 207.
16 E. B. Maxted and S. Akhtar, J. Chem. Soc., 1959, 3130.
17 H. J. Reich, S. Wollowitz, J. E. Trend, F. Chow, and D. F. Wendelborn, J. Org. Chem., 1978, 43, 1697.
18 K. B. Sharpless and M. W. Young, J. Org. Chem., 1975, $40,947$.
19 P. D. Bartlett, S. J. Tauber, and W. P. Weber, J. Am. Chem. Soc., 1969, 91, 6362.
20 R. B. Bates, L. M. Kroposki, and D. E. Potter, J. Org. Chem., 1972, 37, 560.

